We use analytics and cookies to understand site traffic. Information about your use of our site is shared with Google for that purpose.You can read our privacy policies and terms of use etc by clicking here.
Batch
Pre-requisites
Minio should already be installed with Seldon Deploy. The minio browser should be exposed on /minio/
. For a managed trial cluster by default the credentials will be as per the deploy login.
On a production cluster the namespace needs to have been setup with a service account. This is documented under Getting Started > Product Installation > Argo
Iris Model
We will:
- Deploy a pretrained sklearn iris model
- Run a batch job to get predictions
- Check the output
Deploy Model
Use the model url:
gs://seldon-models/sklearn/iris
Setup Input Data
Download the input data file.
Go to the minio browser and use the button in the bottom-right to create a bucket. Call it data
.
Again from the bottom-right choose to upload the input-data.txt
file to the data
bucket.
Run a Batch Job
Go to ‘Batch Jobs’ in the middle-right under the text ‘Initiate or get the status of batch requests’. Create a batch job with parameters:
Input Data Location: s3://data/input-data.txt
Output Data Location: s3://data/output-data-{{workflow.name}}.txt
Number of Workers: 15
Number of Retries: 3
Method: Predict
Transport Protocol: REST
Input Data Type: ndarray
Object Store Secret Name: seldon-job-secret
Give the job 1-2 minutes to complete. Then refresh the page to see the status.
In minio you should now see an output file:
If you open that file you should see contents such as:
{"data": {"names": ["t:0", "t:1", "t:2"], "ndarray": [[0.0006985194531162841, 0.003668039039435755, 0.9956334415074478]]}, "meta": {"requestPath": {"iris-container": "seldonio/sklearnserver:1.5.0-dev"}, "tags": {"tags": {"batch_id": "8a8f5e26-2b44-11eb-8723-ae3ff26c8be6", "batch_index": 3.0, "batch_instance_id": "8a8ff94e-2b44-11eb-b8d0-ae3ff26c8be6"}}}}
{"data": {"names": ["t:0", "t:1", "t:2"], "ndarray": [[0.0006985194531162841, 0.003668039039435755, 0.9956334415074478]]}, "meta": {"requestPath": {"iris-container": "seldonio/sklearnserver:1.5.0-dev"}, "tags": {"tags": {"batch_id": "8a8f5e26-2b44-11eb-8723-ae3ff26c8be6", "batch_index": 6.0, "batch_instance_id": "8a903666-2b44-11eb-b8d0-ae3ff26c8be6"}}}}
{"data": {"names": ["t:0", "t:1", "t:2"], "ndarray": [[0.0006985194531162841, 0.003668039039435755, 0.9956334415074478]]}, "meta": {"requestPath": {"iris-container": "seldonio/sklearnserver:1.5.0-dev"}, "tags": {"tags": {"batch_id": "8a8f5e26-2b44-11eb-8723-ae3ff26c8be6", "batch_index": 1.0, "batch_instance_id": "8a8fbe98-2b44-11eb-b8d0-ae3ff26c8be6"}}}}